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Background of Project
• Considerable previous work has investigated predictability 

of rapid intensification (RI) within Atlantic tropical cyclones 
(TCs)
• RI defined as an increase of peak wind speed of 30 kt in 24 hours, 

current operational definition by NHC

• 2018-2019 Testbed experiments included AI-based 
ensemble for predicting Atlantic RI using SHIPS-RII 
predictors and GFS predictors
• Could the AI ensemble be improved using better features 

from GFS/FNL data in combination with SHIPS-RII 
predictors?



2019 Testbed Example Output



Preliminary Verification Skill, 2017 
– 2019 seasons (old ensemble)

• Verification skills from old model did not align with the 
training phase BSS values (which were roughly 0.4)
• 2017:  0.042
• 2018:  0.034
• 2019:  -0.08 

(preliminary based on b-decks for 11 storms – through Lorenzo)

• Poor performance attributed to overfitting in the cross-
validation phase when building the ensemble
• New ensemble generation has been finalized and is now 

being verified, as described below



Data and Methods – Updates
• RI dataset – HURDAT2
• All Atlantic Basin TCs spanning 2004-2016 were included, a 

total of 3605 timesteps (observations taken every 6 hours)
• Used HURDAT2 only to categorize RI (no real-time best-track 

data used for forecasts)

• Statistical Hurricane Intensification Prediction System 
(SHIPS) Rapid Intensification Index (RII) parameters
• Initial set of 109 predictors from SHIPS used prior to feature 

selection
• 71 SHIPS predictors
• 17 GOES IR imagery predictors
• 21 Precipitable water predictors

• Also employed 5 persistence predictors (6, 12, and 24-
hour previous intensity change, previous RI flag, 
previous RI count)



Data and Methods
• SHIPS predictors do not offer spatial insight into TC 

structure (e.g. 850 hPa specific humidity for two TCs 
with same low-level mean RH predictor value of 74)



Data and Methods
• Multiple GFS analysis grids 

retained for each TC timestep
• 98 total grids

• 6 three-dimensional variables on 
11 isobaric surfaces, including 
temperature, u and v wind, 
vertical velocity, absolute 
vorticity, equivalent potential 
temperature, specific humidity

• Static stability on 9 isobaric 
levels

• 12 single-level grids, including 
MSLP, skin temperature, 
tropopause u, v, T, elevation, and 
pressure, surface-based CAPE 
and CIN, 850-200 hPa shear, and 
200 hPa divergence



Data and Methods
• PCA and KPCA formulated on GFSA grids individually to 

quantify maximum separation
• Tested 17 different kernel functions in KPCA, as well as RPCA

• RBF kernels with separation parameter of 5, 10, 25, 50, 75, 100, 200, 
500, 1000

• Polynomial kernels with degrees from 2 to 10
• Separation quantified by k-means cluster analysis with 2 

clusters, quantifying RI/non-RI separation between clusters
• Separability metric the sum of the RI percentage in RI cluster 

with the non-RI percentage in the non-RI cluster
• All PC scores whose clustering yielded a separation metric 

exceeding the 99th percentile were retained
• Analyses repeated for each RI category in Kaplan et al. (2015), 

generated unique predictors for each RI definition



Data and Methods
• PCA/KPCA separability results



Feature Selection
• After including PCA-derived features and SHIPS 

predictors, used feature selection to reduce the 120+ 
feature sets for each RI category
• Feature selection done using forward selection on all 

128 possible predictors (8256 combinations)
• Forward selection used leave-one-season out approach to 

minimize overfitting issues from before

• Identified global BSS maximum on testing set, this value 
was used as a measure of best performance for the 
given predictor set
• Very computationally expensive but should find global 

maximum in performance for the given predictor set



Feature Selection
• Example – 30 kt/24 h



New Ensemble Members
• After establishing the feature selection procedure, 

building AI ensemble was next
• Tested multiple support vector machine (SVM) 

configurations, as well as a logistic regression model
• Logistic regression deemed proxy for current SHIPS-RII since it 

gave similar performance and utilized similar predictors
• SVM configuration parameters tested; all possible 

permutations from set below (40 possible 
permutations)
• Cost function – 0.1, 1, 10, 100
• Values for γ in radial basis function kernel – 0.01, 0.05, 0.1, 

0.25, 0.5, 0.75, 1, 2, 5, 10
• 41 total ensemble members considered



New Ensemble Members
• Logistic regression performance was baseline from 

which ensemble members were selected
• Logistic BSS from optimal predictor (tuned for logistic 

model) – 0.155
• When comparing 40 SVM configurations against this 

value, only two members outperformed the logistic 
model
• SVM – γ = 0.01, cost = 10 (called SVM1) – BSS = 0.169
• SVM - γ = 0.1, cost = 10    (called SVM2) – BSS = 0.164

• Boost of roughly 10% over logistic model



New Predictors
• Each ensemble member retained its own unique set of 

predictors optimized to that member
• Predictor set sizes were still large:
• Logistic regression – 21 predictors
• SVM1 – 45 predictors
• SVM2 – 36 predictors

• Common variables in all ensemble members included 
• KPC5 for 400 mb Absolute Vorticity (15 x 15 grid)
• Generalized Shear Predictor (SHRG)
• Percent area with brightness temperature < -10C
• 6-hour intensity change
• Number of previous RIs
• Previous RI flag (1=RI, 0=no RI)



Results, New Ensemble - 2017
• All timesteps
• Global BSS: 0.111
• Logistic:  0.125
• SVM1: 0.089
• SVM2: 0.038

• Only RI timesteps
• Global BSS: 0.123
• Logistic: 0.152
• SVM1: 0.141
• SVM2: 0.041



Results, New Ensemble - 2018
• Global BSS: 0.067
• Logistic:  -0.018
• SVM1: 0.075
• SVM2: 0.023

• Only RI timesteps
• Global BSS: 0.037
• Logistic: 0.020
• SVM1: 0.053
• SVM2: 0.027



Results, New Ensemble - 2018
• Global BSS: 0.067
• Logistic:  -0.018
• SVM1: 0.075
• SVM2: 0.023

• Only RI timesteps
• Global BSS: 0.037
• Logistic: 0.020
• SVM1: 0.053
• SVM2: 0.027



Results
• Individual member performance poorer than global 

results for 2017-2018.  Importantly, results are less 
variable in global model, which is good for forecast 
applications
• All years results
• Global BSS: 0.097
• Logistic: 0.078
• SVM1: 0.085
• SVM2: 0.033



Conclusions
• Updated cross-validation routine providing realistic BSS 

values during model training phase, boosting results over 
logistic regression by about 10%
• GFS predictors included in all three retained ensemble 

members
• Mid-level vorticity clearly has importance in identifying RI 

environments
• 2017-2018 results were improved on many storms that were 

difficult to forecast, though some poor performing storms 
remain
• Should improve with additional years of data and more training of 

ensemble
• Working now on identifying relationships between 

predictors and forecasts for interpretation



Questions?



Results, New Ensemble - 2019
• Global BSS: -0.059
• Logistic:  -0.051
• SVM1: -0.132
• SVM2: -0.125

• Only RI timesteps
• Global BSS: 0.003
• Logistic: 0.078
• SVM1: -0.088
• SVM2: -0.013


