USING EVOLUTIONARY PROGRAMMING TO GENERATE IMPROVED TROPICAL CYCLONE INTENSITY FORECASTS

Jesse Schaffer Dr. Paul Roebber Dr. Clark Evans

Motivation

https://www.nhc.noaa.gov/verification/verify5.shtml?

Model Overview / Goals

- Develop a Statistical-Dynamical Model using EP to generate improve TC intensity forecasts
- Separate model for the Atlantic and East Pacific Basins
- Deterministic and probabilistic TC intensity forecasts every 12h out to 120h
- Probabilistic forecasts for rapid intensification and rapid weakening every 12h out to 72h

<u>Data</u>

- Utilized SHIPS developmental data for all TCs in the respective basin from 2000-2015 (includes 46 variables converted to standard anomaly, plus a constant)
- TC cases were separated into three categories: TSs, Weak Hurricanes, Major Hurricanes
- Pulled storms evenly from each category to form Training, Cross-Validation, and Testing data sets

Algorithm Structure

Each algorithm has five IF-THEN statements that provide an adjustment to a persistence forecast

1	IF	RHMD <=	RHMD	THEN	0.29	*	INCV	+	-0.51	*	LON	*	0.18	*	RSST
2	IF	T150 <=	10	THEN	0.29	*	MSLP	+	-0.95	*	10	*	-0.01	*	V850
3	IF	RD26 >	SHDC	THEN	-0.13	*	Z000	*	0.71	*	RHCN	+	-0.3	*	SHDC
4	IF	D200 >	IR00_2	THEN	0.11	*	RD20	+	0.02	*	10	*	-0.61	*	MTPW_2
5	IF	RHMD >	IR00_2	THEN	0.14	*	SDDC	+	-0.12	*	PSLV_5	*	0.39	*	T200

• Blue highlights lines where the if-statement is always true and thus the following adjustment will always be performed.

<u>Mutation</u>

Each algorithm has five IF-THEN statements that provide an adjustment to a persistence forecast

1	IF	RHMD >	RHMD	THEN	0.29 * IN	ICV +	-0.51 *	LON	*	0.18	*	RSST
2	IF	T150 <=	10	THEN	0.29 * M	ISLP +	-0.95 *	10	*	-0.01	*	V850
3	IF	RD26 >	SHDC	THEN	-0.13 * Z0	* 000	0.71 *	RHCN	+	-0.3	*	SHDC
4	IF	D200 >	IR00_2	THEN	0.11 * RI	D20 +	0.02 *	10	*	-0.61	*	MTPW_2
5	IF	RHMD >	IR00_2	THEN	0.14 * SI	DDC +	-0.12 *	PSLV_5	*	0.39	*	T200

- Blue highlights lines where the if-statement is always true and thus the following adjustment will always be performed.
- Red highlights lines where the if-statement is always false and thus the following adjustment will never be performed.

Bayesian Model Combination

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, doi:10.1175/ MWR2906.1.

Performance on Testing Data (Atlantic)

Performance on Testing Data (Pacific)

Improvement After Removing Landfall Cases (Atlantic)

Total Cases	632	564	499	437	375	336	293	256	225	193
Landfall	5.2%	8.0%	9.0%	10.1%	11.4%	12.2%	10.9%	9.8%	9.3%	10.4%

Improvement After Removing Landfall Cases (Pacific)

Lead Time

Lead Time	12	24	36	48	60	72	84	96	108	120
Total Cases	362	318	273	231	194	163	136	108	85	71
Landfall	1.4%	1.5%	1.8%	2.1%	2.0%	1.8%	2.2%	2.7%	3.4%	4.1%

Conclusion

 EP can successfully be used to forecast TC intensity and it shows promise in generating improved forecasts

<u>Future Work</u>

- Real time testing during the 2018 season
- Modification of model to handle landfalling cases
- Evaluation of RI and RW probabilistic forecasts
- Case Specific Examinations

<u>Acknowledgments</u>

Thank you to NOAA and the Joint Hurricane Testbed for funding this research

Questions?