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Motivation

https://www.nhc.noaa.gov/verification/verify5.shtml?



Model Overview / Goals

• Develop a Statistical-Dynamical Model using EP to 
generate improve TC intensity forecasts

• Separate model for the Atlantic and East Pacific 
Basins

• Deterministic and probabilistic TC intensity 
forecasts every 12h out to 120h

• Probabilistic forecasts for rapid intensification 
and rapid weakening every 12h out to 72h



Data

• Utilized SHIPS developmental data for all TCs in 
the respective basin from 2000-2015 (includes 46 
variables converted to standard anomaly, plus a 
constant)

• TC cases were separated into three categories: 
TSs, Weak Hurricanes, Major Hurricanes

• Pulled storms evenly from each category to form 
Training, Cross-Validation, and Testing data sets
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Algorithm Structure
Each algorithm has five IF-THEN statements that 
provide an adjustment to a persistence forecast

• Blue highlights lines where the if-statement is always true and 
thus the following adjustment will always be performed.



Mutation
Each algorithm has five IF-THEN statements that 
provide an adjustment to a persistence forecast

• Blue highlights lines where the if-statement is always true and 
thus the following adjustment will always be performed.

• Red highlights lines where the if-statement is always false and 
thus the following adjustment will never be performed.



Bayesian Model Combination

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian 
model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–
1174, doi:10.1175/ MWR2906.1. 
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Total Cases 632 564 499 437 375 336 293 256 225 193

Landfall 5.2% 8.0% 9.0% 10.1% 11.4% 12.2% 10.9% 9.8% 9.3% 10.4%



Lead Time 12 24 36 48 60 72 84 96 108 120

Total Cases 362 318 273 231 194 163 136 108 85 71

Landfall 1.4% 1.5% 1.8% 2.1% 2.0% 1.8% 2.2% 2.7% 3.4% 4.1%
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Conclusion
• EP can successfully be used to forecast TC 

intensity and it shows promise in generating 
improved forecasts

Future Work
• Real time testing during the 2018 season
• Modification of model to handle landfalling cases
• Evaluation of RI and RW probabilistic forecasts
• Case Specific Examinations 
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