An Improved Wind Probability Program: A Joint Hurricane Testbed Project Update

Mark DeMaria and John Knaff, NOAA/NESDIS, Fort Collins, CO Stan Kidder, CIRA/CSU, Fort Collins, CO Patrick Harr, Naval Postgraduate School, Monterey, CA Chris Lauer, NCEP/TPC, Miami, FL

> Presented at the Interdepartmental Hurricane Conference March 5, 2008

Monte Carlo Wind Probability Model

- 1000 track realizations from random sampling NHC track error distributions
 - Serial correlation and bias of errors accounted for
- Intensity of realizations from random sampling NHC
 intensity error distributions
 - Serial correlation and bias of errors accounted for
 - Special treatment near land
- Wind radii of realizations from radii CLIPER model and its *radii error* distributions
 - Serial correlation included
- Probability at a point from counting number of realizations passing within the wind radii of interest

MC Probability Example Hurricane Dean 17 Aug 2007 18 UTC

1000 Track Realizations

64 kt 0-120 h Cumulative Probabilities

Project Tasks

- 1. Improved Monte Carlo wind probability program by using situation-depending track error distributions
 - Track error depends on Goerss Predicted Consensus Error (GPCE)
- 2. Improve timeliness by optimization of MC code
- 3. Update NHC wind speed probability table product
 - Extend from 3 to 5 days
 - Update probability distributions (currently based on 1988-1997)

Code Optimization

- Code profiling showed ~85% of CPU in distance calculation routine
- Automated procedure added to test for regular grid
- If yes, rectangular mask added at each time step to reduce number of distance calculations
- Speed up of ~600% for large grid
 25 to 50% expected
- Implemented before 2007 season

Code Optimization

Text Product Grid

Graphical Product Grid

Wind Speed Probability Table

WIND SPEED FORECAST FOR DEAN EXPRESSED AS PROBABILITY FROM NHC ADVISORY 16 5:00 AM EDT AUG 17 2007

TIME	WIND SPEED INTERVAL IN MPH							
HOURS	DISSIPATED	TROPICAL	TROPICAL	HURRICANE	HURRICANE			
		DEPRESSION	STORM		CAT. 1	CAT. 2	CAT. 3	CAT. 4-5
		< 39	39 - 73	>= 74	74 - 95	96 - 110	111 - 130	>= 131
12	<2%	<2%	<2%	>98%	30%	50%	20%	3%
24	<2%	<2%	5%	95%	40%	30%	15%	5%
36	<2%	<2%	<2%	>98%	25%	25%	35%	20%
48	<2%	<2%	<2%	>98%	10%	20%	30%	40%
72	<2%	<2%	<2%	98%	10%	25%	30%	30%

Wind Speed Probability Table

- Developed by E. Rappaport and M. DeMaria as part of original NHC graphical products
- Limitations addressed by JHT project
 - Based on 1988-1997 NHC error statistics
 - Extends only to 3 days
- Other limitations
 - Does not directly account for land interaction
 - Inconsistent with other probability products from MC model
- Rick Knabb and Dan Brown suggestion*:
 - Use output from MC model as table input
 - Addresses all of the above limitations
 - Will automatically update when MC model updates

Wind Speed Probability Table Evaluation Procedure

- Examine MC model intensity probability distributions for idealized storms
- Compare MC intensity probabilities with WSPT values for real forecasts
 - Frances 29 Aug 2004 12 UTC
 - Katrina 24 Aug 2005 18 UTC
 - Katrina 27 Aug 2005 18 UTC
 - Ernesto 29 Aug 2006 06 UTC
 - Ernesto 29 Aug 2006 18 UTC
 - Humberto 12 Sep 2007 12 UTC
 - Humberto 12 Sep 2007 18 UTC
 - Ingrid 13 Sep 2007 00 UTC

Wind Speed Probability Table Idealized Storm Cases

Straight west track far from land Three cases: Constant max wind of 30, 90 and 150 kt

Straight north track close to land Three cases: Constant max wind of 30, 90 and 150 kt

MC Intensity Distributions Far from Land

30 kt fcst

90 kt fcst

150 kt fcst

MC Intensity Distributions 150 kt fcst far from and near land

Far from land

Near land

MC and Wind Speed Table Probability Comparison

Hurricane France Example

Nine Forecast Totals

Forecast-Dependent Probabilities

- Operational MC model uses basin-wide track error distributions
- Can situation-dependent track distributions be utilized?

Track plots courtesy of J. Vigh, CSU

Goerss Predicted Consensus Error (GPCE)

- Predicts error of CONU track forecast
 Consensus of GFDI, AVNI, NGPI, UKMI, GFNI
- GPCE Input
 - Spread of CONU member track forecasts
 - Initial latitude
 - Initial and forecasted intensity
- Explains 15-50% of CONU track error variance
- GPCE estimates radius that contains ~70% of CONU verifying positions at each time

Use of GPCE in the MC Model

- 2002-2006 database of GPCE values created by NRL*
- Are GPCE radii correlated with NHC and JTWC track errors?

– GPCE designed to predict CONU error

- How can GPCE values be used in the MC model?
 - MC model uses along/cross track error distributions

72 hr Atlantic NHC Along Track Error Distributions Stratified by GPCE (2002-2006)

NHC Along and Cross Track Error Standard Deviations Stratified by GPCE (2002-2006 Atlantic Sample)

MC Model with Track Errors from Upper and Lower GPCE Terciles

Lower Tercile Distributions

Upper Tercile Distributions

Hurricane Frances 2004 01 Sept 00 UTC Example 120 hr Cumulative Probabilities for 64 kt

Remaining Questions

- How to include GPCE in MC model
 - Method 1: Sample from appropriate tercile
 - Method 2: Include GPCE input in serial correlation correction
- Behavior in other basins
- Does GPCE correction improve probability verification?
- Real time tests beginning Aug 2008

Summary

- Code optimization is complete
 Factor of 6 speed up
- Wind speed table product input from MC model is a reasonable approach
 Implementation in 2008
- GPCE-dependent MC model is promising
 - Further evaluation needed
 - Real time parallel runs in Aug 2008?