2013 Upgrades to the Operational GFDL/GFDN Hurricane Model Morris A. Bender, Timothy Marchok Geophysical Fluid Dynamics Laboratory, NOAA

Isaac Ginis, BijuThomas, Richard M. Yablonsky Graduate School of Oceanography, University of Rhode Island

> Robert E. Tuleya NOAA Visiting Scientist, CCPO/ODU, Norfolk, Va.

This NOAA Joint Hurricane Testbed project was funded by the US Weather Research Program in NOAA/OAR's Office of Weather and Air Quality

GFDL 2012 UPGRADES

Model Physics Upgrades

- **1. Detrained Microphysics passed from SAS to micro-physics**
- 2. Bugs Fixed in PBL and SAS convective schemes
- 3. Retuning of momentum mixing
- 4. Improved formulation of surface exchange coefficients (ch, cd)
- 5. Implementation of GFS Shallow Convection

6. Improved PBL structure (.25 Critical Richardson number; reduced vertical mixing coefficient by 40% in storm region)

Initialization

- **1. Reduction in storm size for larger storms**
- 2. Removal of asymmetries (impact was neutral)

GFDL/HWRF Six Year Intensity Trend

48h Intensity Error (knots)

72h Intensity Error (knots)

Trend of GFDL and HWRF 72-h Intensity Forecast Errors

Trend of GFDL and HWRF 48-h Intensity Forecast Errors Atlantic Basin, 2007-2012

with operational NWS regional hurricane models GFDL and HWRF exhibit comparable improvements, with their mean showing further improvements

Proposed GFDL 2013 UPGRADES

Model Resolution and Dynamics

- 1. Increase of inner nest model resolution from 1/12th to 1/18th degree.
- 2. Reduction of gravity wave damping term in time differencing scheme (Kurihara, Tripoli, Bender, MWR, 1976)

Model Physics

- 1. Initiation of large-scale condensation at 100% humidity for inner nests
- 2. Implementation of meso-SAS (to be evaluated)
- 3. Implementation of new version of Princeton Ocean Model (MPIPOM-TC) for ocean coupling (to be evaluated)

Initialization

1. Improved specification of maximum wind in vortex initialization (significant reduction in initial negative wind bias)

Proposed Upgraded model to be extensively tested on 2010, 2011 and 2012 seasons using current version of the GFS.

- Results to be summarized in presentation for Atlantic basin only.
- Results presented without new meso-SAS and MPIPOM-TC (Preliminary results !)
- Version will serve as benchmark for evaluation of new meso-SAS and MPIPOM-TC for final model configuration

Impact of Improved Vortex Specification in Initialization

Impact of Higher Resolution and Reduced Gravity Wave Damping on Inner Core

Hurricane Katia (0000 UTC 1 September, 2011)

Current Model

Upgraded Model

Hurricane Katia (0000 UTC 1 September, 2011)

Current Model

Upgraded Model

IMPACT ON TRACK AND INTENSITY

2012 Atlantic Track and Intensity Errors

TRACK ERROR

INTENSITY ERROR

12% Reduced track error days 4-5. Track error reduced all time levels

Significant reduction in early forecast periods due to improved initialization. Neutral Impact Beyond hour 12.

2012 Intensity Bias

Significantly Reduced Intensity Bias. Small Positive Bias at 3-5 days

Hurricane Ernesto

Much Improved Tracks for Nadine

2010 Atlantic Track and Intensity Errors

TRACK ERROR

INTENSITY ERROR

Overall Neutral Impact on Track

11% Reduced Intensity Error Through Day 3 (Season Dominated by Strong Storms)

2010 Intensity Bias

Much Reduced Negative Bias in a Season Dominated by Intense Hurricanes (Danielle, Igor, Earl, Julia)

2011 Atlantic Track and Intensity Errors

TRACK ERROR

INTENSITY ERROR

Slightly Improved Track Errors for early forecast periods. 4-5% Degraded Track Error Days 4-5 Excessive Positive bias in Irene and Katia at Days 2-4 Contributed to Increased Intensity Error with Upgraded Model

2011 Intensity Bias

Significant Positive Bias at Days 3 through 5

Five Day Forecast of Maximum Surface Winds (knots)

Hurricane Irene (1200 UTC 23rd August) Hurricane Katia (0000 UTC 3rd September)

Impact of new Princeton Ocean Model on SSTs

Hurricane Katia (3rd September starting time)

More realistic SST cold wake may significantly reduce positive bias •

COMBINED 2010, 2011, AND 2012 SEASONS

2010, 2011, 2012 Combined Seasons

Track

Intensity

Small Reduction in Track Error (~4%) Overall Neutral Impact on Intensity Despite Large Reduction in Bias •

SUMMARY

PRELIMIARY TESTS OF GFDL/GFDN 2013 UPGRADES WERE CONDUCTED FOR 2010, 2011 AND 2012 HURRICANE SEASONS.

THESE TESTS WILL SERVE AS BENCHMARK TO EVALUATE NEW MESO-SAS AND NEW PRINCETON OCEAN MODEL FOR FINAL UPGRADED MODEL CONFIGURATION

NEW MODEL HAS MUCH REDUCED INTENSITY BIAS ALTHOUGH OVERALL IMPACT ON INTENSITY ERROR SO FAR WAS MOSTLY NEUTRAL EXCEPT AT EARLY FORECAST TIMES.

 PREDICTION OF INTENSE HURRICANES WAS SIGNIFICANTLY IMPROVED.

• IMPACT ON TRACK WAS SMALL (~4% REDUCTION IN TRACK ERROR)