Improvements to the Tropical Cyclone Genesis Index (TCGI)

Jason Dunion¹, John Kaplan², Andrea Schumacher³, Joshua Cossuth⁴, Kate Musgrave³, & Paul Leighton²

1 University of Miami/CIMAS – NOAA/AOML/HRD – University at Albany-SUNY
2 NOAA/AOML/Hurricane Research Division
3 Colorado State University/CIRA
4 Florida State University

Acknowledgements

Funding: This NOAA Joint Hurricane Testbed project was funded by the US Weather Research Program in NOAA/OAR's Office of Weather and Air Quality

NHC Points of Contact: Eric Blake, Todd Kimberlain, Chris Landsea, & Richard Pasch

Discussion Outline

Motivation

• Enhance the Tropical Cyclone Genesis Index (TCGI), a realtime, <u>objective</u>, <u>disturbance-centric</u> scheme for identifying the probability of TC genesis in the NATL;

Tropical Cyclone Genesis Index (TCGI)

- Background & overview
- 2011-2015 verification
- Planned refinements

Conclusions & Future Work

Accomplishments (Initial Project)

- Running in real-time at CIRA since 2013
- http://rammb.cira.colostate.edu/realtime_data/nhc/tcgi/
- Transitioned to operations at NHC in fall 2014
- Currently running on the NCEP Weather & Climate
 Operational Supercomputing System (WCOSS)
- Follow-on project successfully funded under most recent
 JHT cycle

What is the Tropical Cyclone Genesis Index?

Objective/disturbance centric/probabilistic scheme for predicting TC genesis (0-48 hr & 0-120 hr)

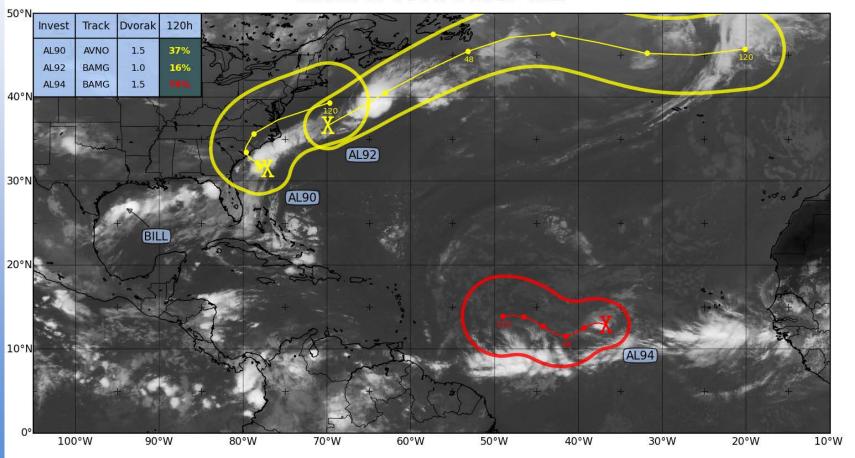
High >50%

Medium 30-50%

Low <30%

- Runs on NATL invests identified by NHC
- Requires TAFB Dvorak fixes (F-Deck)
- Run times: 00/06/12/18 UTC

t=-2 hr: :30 & :45

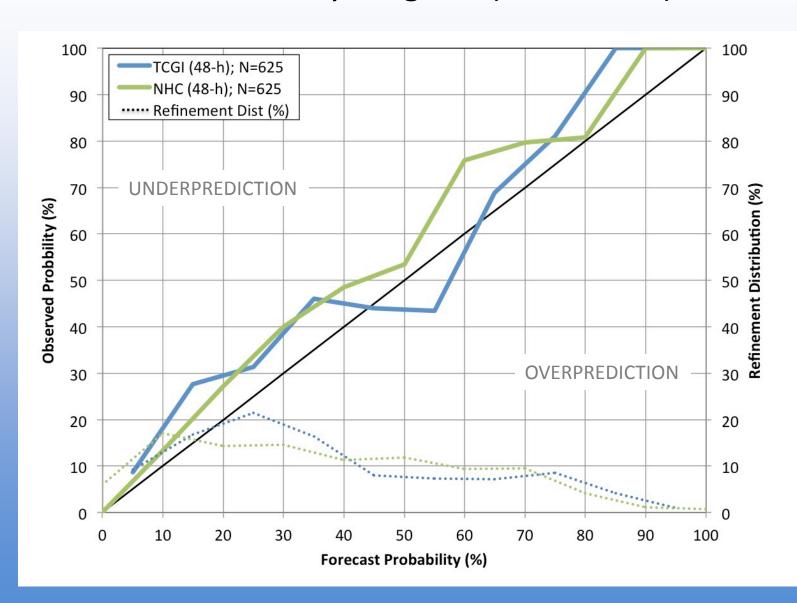

t=-1 hr: :00/:15/:30/:45/:55

TCCI forms and		* ATLANTIC TC GENESIS INDEX * * AL972013 10/01/13 18 UTC *														
TCGI forecast	TIME (h		0	6	12	18	24	36	48 45.1	60	72	84	96	108	120 65.0	
(0-48 & 0-120-hr) Predictor Values Along the	HDIV (x VORT (x DV24 (x VSHD (k MLRH (%	10-7s-1) 10-6s-1) 10-6s-1) (t)	-3.0 1.3 0.3 5 67 42	-4.0 1.6 0.0 9 67 N/A	-1.0 1.6 -0.1 11 64 N/A	-3.0 1.7 -0.7 9 63 N/A	-5.0 1.6 -0.5 9 67 N/A	0.0 1.5 -0.7 17 64 N/A	-6.0 1.1 -0.1 19 68 N/A	1.0 0.8 -0.3 19 62 N/A	-5.0 1.0 0.1 19 64	0.0 0.5 0.6 26 52 N/A	-4.0 1.1 0.0 24 54	0.0 1.1 -0.1 28 52	0.0 1.1 -0.3 27 54	
FromestaBositaiek	PCCD (% TNUM)	1.00	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	
&		eg W)	16.8 83.0	17.2 83.5	84.4	18.5 85.1	20.3 85.8	22.9 87.0	25.0 87.4	26.3 87.5	27.6 86.8	28.3 86.5	29.2 85.5	30.1 84.4	31.4 82.9	
TEGLEGRAGESES	DTL (k TRACK S		169 AVN0	172 AVN0	217 AVN0	259 AVN0	132 AVN0	154 AVN0	382 AVN0	358 AVN0	270 AVN0	188 AVN0	56 AVNO	-5 AVN0	-140 AVNO	
(AVIROLATINE BLOWG)	Prob of Prob of	Prob of Genesis (t= $48h$) = 45.1 is 1.6 times the sample mean (27.9) Prob of Genesis (t= $120h$) = 65.0 is 1.6 times the sample mean (40.3)														
Climatology	CONTRIB	CONTRIBUTIONS OF CLIMATOLOGY AND INDIVIDUAL PREDICTORS TO TCGI PROBABILITY														
Predictor		*	*****		R ****		*****									
Forecast		10-7s-1)	AVG	-3.		.9 .1	AVG	-2.	2 15	.3						
Contributions	DV24 (x VSHD (k MLRH (%		-0.2 16.8 64.9	12.	3 4		-0.2 19.0 61.3	18.	5 0	.7						
(0-48 & 0-120-hr)	PCCD (%		29.1		8 2	.9 .1	28.7 0.9		8 2	.6						
(6 16 4 6 126 111)	%CONT =	% contri	bution	to TC	GI pro	babili	ty									
	PREDICTOR DEFINITIONS (Averaged Over 500 km Radius)															
Predictor Information	HDIV = DV24 = VSHD = MLRH =	Climatolo 850-mb GF 24-hr Cha 850-200 m 600-mb GF % GOES WV	S Hori nge in b GFS ' S Rela	zontal GFS 8 Vertic tive H	Diver 50-mb al She umidit	gence Vortic ar y	ity (V		: NHC-	TAFB I	nvest I	Databa	se)			

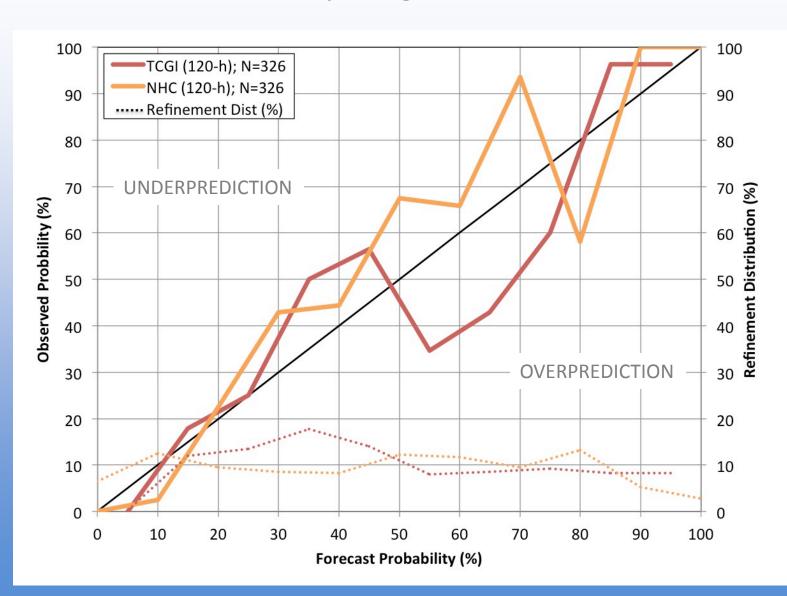
TNUM = TAFB T-Number

TC Genesis Index (TCGI) Experimental Graphical TCGI

Tropical Cyclone Genesis Index (TCGI) - Experimental 120-h Forecast Outlook Issued at 01 AUG 2015 12Z

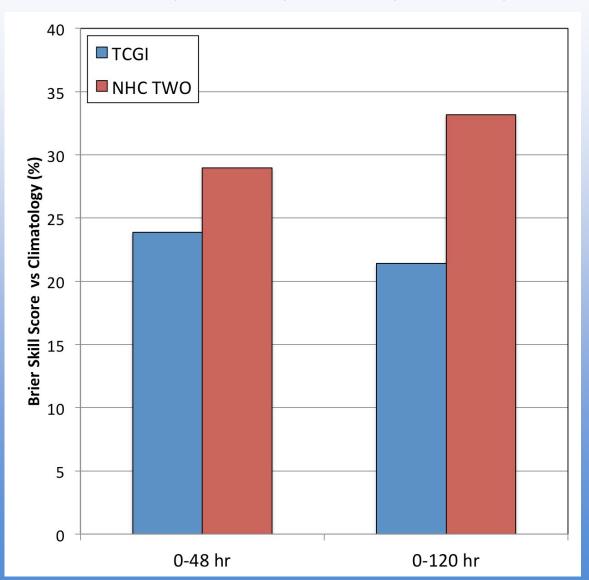


TCGI Forecast Verification


0-48 hr: 2011-2015

0-120 hr: 2013-2015

Reliability Diagram (2011-2015)



Reliability Diagram (2013-2015)

Brier Skill Score

0-48 hr (2011-2015); 0-120 hr (2013-2015)

TCGI Year-1 Plans and Early Results

Year-1 Work Plan: Completed -- In Progress -- Not Begun

Oct-Dec 2015

 Collect, QC, and format 2011-2014 NATL & EPAC Dvorak invest databases

<u>Jan-Feb 2016</u>

Complete identification/development of new NATL/EPAC
 TCGI predictors

April 2016

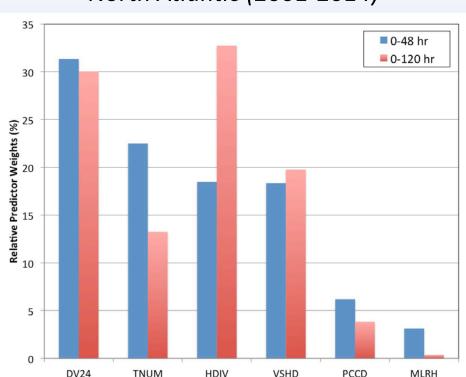
 Begin development of an ECMWF-based Atlantic TCGI using predictors and predictor weights that were developed for the GFS version of TCGI

Year-1 Work Plan: Completed -- In Progress -- Not Begun

June-Nov 2016

 Begin sensitivity testing for optimal combinations of Atlantic and Pacific TCGI predictors (GFS version)

Aug-Oct 2016


Develop and test graphical TCGI products with real-time cases

Dec 2016

 Develop code for running a real-time version of the Atlantic and Pacific TCGI (GFS version)

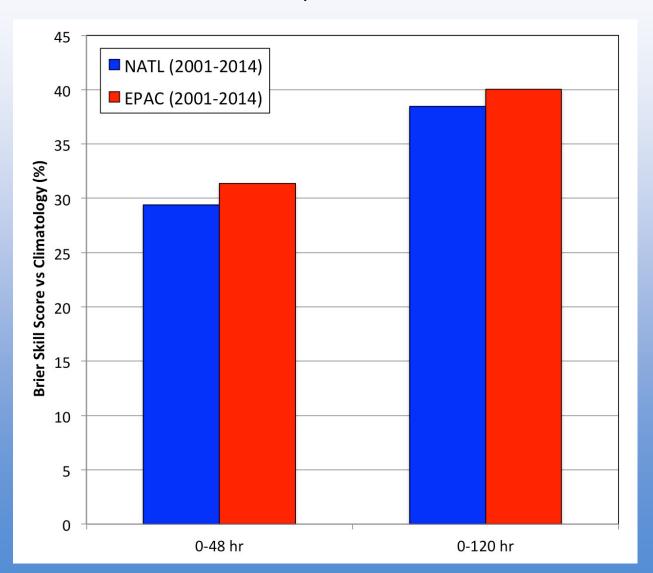
Relative Predictor Weights (2001-2014 Invest Database)

EPAC (2001-2014)

DV24: 24-hr change in 850 hPa vorticity (GFS)

TNUM: NOAA TAFB Dvorak T-number

HDIV: 850 hPa horizontal divergence (GFS)


VSHD: 200-850 hPa vertical shear (GFS)

PCCD: % GOES water vapor pixels <-40 C

MLRH: 600 hPa RH (GFS)

15

Brier Skill Score 2001-2014; cross validated

Conclusions & Future Work

TC Genesis Index (TCGI)

- Disturbance-centric/objective/probabilistic (48 & 120-hr)
- 2014: transitioned to operations at NOAA NHC
- 0-48 hr (2011-2015) & 0-120 hr (2013-2015) verifications
 - 1. Reliability diagrams: competitive with NHC TWO
 - 2. Brier Skill Scores (vs climatology)

<u>0-48-hr</u>: TCGI: 24% NHC TWO: 29%

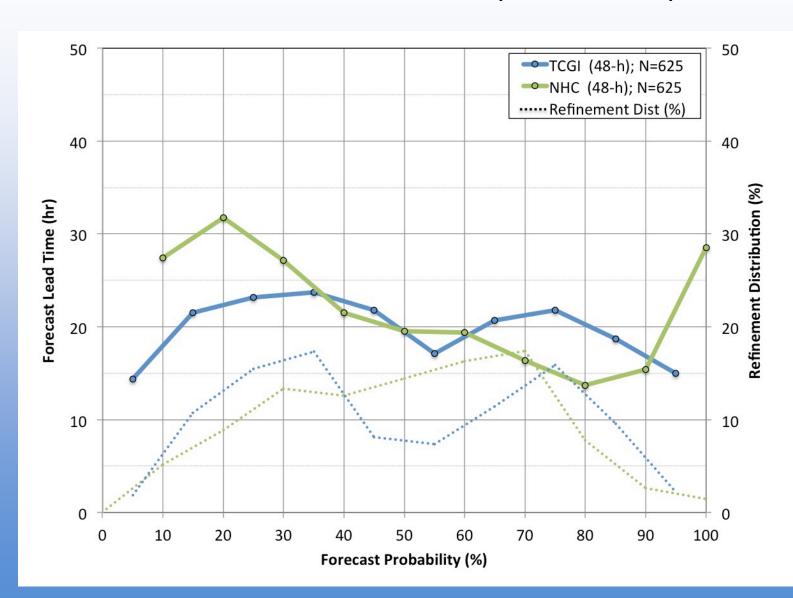
0-120 hr: TCGI: 21%; NHC TWO: 33%

Conclusions & Future Work (Cont'd)

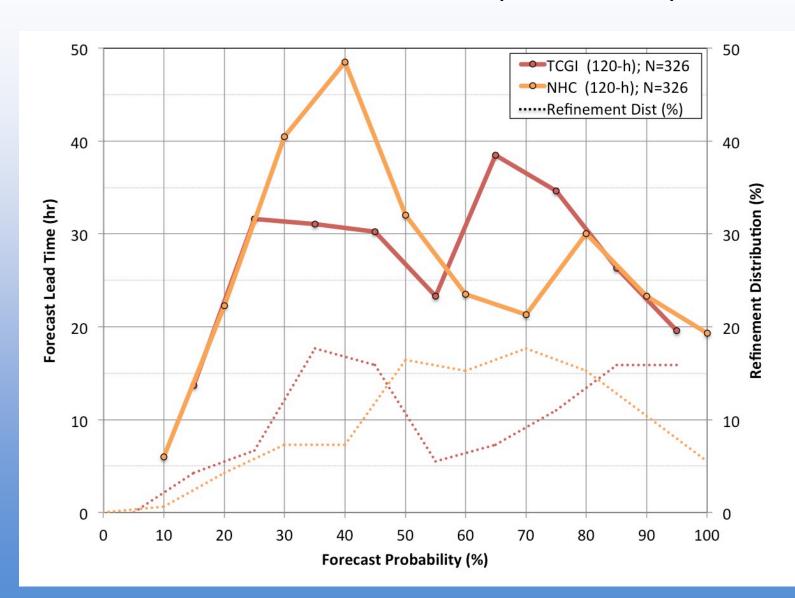
TCGI Year-1 Efforts (Completed)

- 2001-2014 NATL & EPAC invest database development
- TCGI (NATL): tested and re-run
- TCGI (EPAC): tested and run using NATL predictors

TCGI Year-1 Efforts (In Progress/Planned)


- Develop new TCGI predictors (NATL/EPAC)
- ECMWF-based TCGI (NATL); Graphical TCGI
- Sensitivity testing >> optimal predictor combinations (NATL & EPAC)
- Develop code >> real-time versions of TCGI (NATL & EPAC)

Questions


New TCGI Predictors

- Variable search box sizes for 0-48 (e.g. 0-200 km or 0-300 km) and 0-120 hr (0-500 km)
- Additional moisture levels (e.g. 600-800 & 925-1000 hPa)
- Theta-e excess (similar to CAPE)
- Test 850 hPa vorticity x DVG
- Test 850 mb moisture convergence

Forecast Lead Time (2011-2015)

Forecast Lead Time (2013-2015)

